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Abstract. A number of recently proposed variants of the particle swarm optimization algorithm
(PSOA) are applied to an extended Dixon-Szegö bound constrained test set in global optimization.
Of the variants considered, it is shown that constriction as proposed by Clerc, and dynamic
inertia and maximum velocity reduction as proposed by Fourie and Groenwold, represent the main
contenders from a cost efficiency point of view. A parameter sensitivity analysis is then performed
for these two variants in the interests of finding a reliable general purpose ‘off-the-shelf’ PSOA for
global optimization. In doing so, it is shown that inclusion of dynamic inertia renders the PSOA
relatively insensitive to the values of the cognitive and social scaling factors.
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1. Introduction

The particle swarm optimization algorithm (PSOA), first proposed by Kennedy
and Eberhart [1, 2], models the optimal exploration of a problem space by a pop-
ulation of agents or particles; the success histories of the agents influences both
their own search patterns and those of their peers. The search is focused toward
promising regions by biasing each particle’s velocity vector toward both the par-
ticle’s own ‘remembered’ best position and the ‘communicated’ best ever swarm
location. The relative weights of these two positions are scaled by two factors,
aptly called the cognitive and social scaling parameters [3]. Incidentally, these
two components are the among the main governing parameters of swarm behav-
ior (and algorithm efficiency), and have previously been the topic of extensive
studies [4–6].

A newcomer among optimization algorithms, the derivative-free PSOA has
recently received a lot of attention, with some conferences devoted solely to this
topic. The reasons for the interest in the PSOA are numerous, but include the
following: The algorithm can easily be parallelized on massive parallel processing
machines, since the individual searches of the simulated particles are independent
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of each other, and communication between particles is only required once all
particles have evolved to the same pseudo time state.

Furthermore, the PSOA is simpler, both in formulation and computer
implementation, than the genetic algorithm (GA). In addition, the PSOA seems
to outperform the GA for a number of difficult programming classes, notably the
unconstrained global optimization problem [7].

Previously, the PSOA has been applied to analytical test functions, mostly
univariate or bivariate without constraints, by Kennedy [8] and Shi and Eberhart
[9]. Kennedy also applied the algorithm to multimodal problem generators. Pre-
viously, Kennedy [4] used the PSOA as an optimization paradigm that simulates
the ability of human societies to process knowledge.

The PSOA is suited to the training of neural networks and has been applied to
this class of optimization problem by a number of workers, e.g. Eberhart and Hu
[10] and van den Bergh and Engelbrecht [11]. Recent contributions by, amongst
others, Carlisle and Dozier [12] and Eberhart and Shi [13], include modifications
which allow the PSOA to track a changing extremum over time in a dynamic
environment. Lately, the PSOA was successfully applied to optimal structural
design by Fourie and Groenwold [14–16].

Notwithstanding it’s recent popularity, the PSOA has a number of drawbacks,
one of which is the presence of problem dependent parameters. Previously, a
number of workers have attempted to find ‘universal’ values for the PSOA
parameters, the most recent being Carlisle and Dozier in their paper aptly called
‘An off-the-shelf PSO’ [17].

A further drawback of the original algorithm proposed by Kennedy and Eberhart
lies therein that the algorithm is known to quickly converge to the approximate
region of the global minimum. However, the algorithm does not maintain this
efficiency when entering the stage where a refined local search is required to
pinpoint the minimum exactly. This has led to a number of variations on the
original PSOA being proposed to overcome this shortcoming. Some of the most
notable of these formulations are the introduction of an inertia term by Shi and
Eberhart [3], and more recently, the so-called constriction factor by Clerc [18] in
his ‘swarm and queen’ approach.

Constriction seems superior to the introduction of inertia [19]. In the latter
approach, the inertia term is either kept constant or decreased linearly as the search
progresses, with the linear decrease in inertia more efficient than a constant inertia
term. Recently, Fourie and Groenwold [15] dynamically reduced the inertia of
the swarm based on the instantaneous success of the search. This variant allows
the inertia method an efficiency and reliability on par with constriction. More
importantly, the algorithm becomes relatively insensitive to the values of the
cognitive and social scaling factors, a desirable attribute in finding a general ’off
the shelf’ PSOA for global optimization.

In this paper we evaluate some recent variants of the PSOA, while we also
attempt to propose optimal values for the parameters of the most successful
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variants of the algorithm for unconstrained global optimization. Our paper is
structured as follows: In Section 2 we present the global optimization problem.
This is followed by an outline of the original PSOA in Section 3. The variants
of the PSOA under consideration are then detailed in Section 4. In Section 5 the
PSOA and it’s variant are applied to an extended Dixon-Szegö test set, to assess
the efficiency and reliability of the different variants. In Section 6 we perform a
parameter sensitivity study for the most successful variants of the PSOA, namely
constriction, and dynamic inertia and maximum velocity reduction. Finally, we
propose settings for a general ‘off-the-shelf’ PSOA for global optimization in
Section 7, while conclusions are drawn in Section 8.

2. Problem Formulation

Consider the unconstrained (or bounds constrained) mathematical programming
problem represented by the following: Given a real valued objective function
f �x� defined on the set x∈D in �n, find the point x∗ and the corresponding
function value f ∗ such that

f ∗=f �x∗�=min�f �x��x∈D�� (1)

if x∗ exists and is unique. Alternatively, find a low approximation f̃ to f ∗.
If the objective function and/or the feasible domain D are non-convex, then

there may be many local minima which are not optimal. Hence, from a mathe-
matical point of view, problem (1) is essentially insolvable, due to a lack of math-
ematical conditions characterizing the global optimum, as opposed to a strictly
convex continuous function, which is characterized by the Karush-Kuhn-Tucker
conditions at the minimum.

The problem of globally optimizing a real valued function is inherently
intractable (unless hard restrictions are imposed on the objective function) in that
no practically useful characterization of the global optimum is available. Indeed
the problem of determining an accurate estimate of the global optimum is mathe-
matically ill-posed in the sense that very similar objective functions may have
global optima very distant from each other [20]. Nevertheless, the need in practice
to find a relative low local minimum has resulted in considerable research over
the last decades to develop algorithms that attempt to find such a low minimum.
A comprehensive survey of global optimization up to 1990 is presented by Törn
and Zilinskas [21].

3. Particle Swarm Optimization

The basic PSOA is constructed as follows: Consider a swarm of p particles or
birds. For particle i, Kennedy and Eberhart [1, 2] originally proposed that the
position xi is updated in the following manner:

xik+1=xik+�i
k+1� (2)
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with the velocity �i calculated as follows:

�i
k+1=�i

k+c1r1�p
i
k−xik�+c2r2�p

g
k−xik�� (3)

Here, subscript k indicates an (unit) pseudo-time increment. pik represents the
best ever position of particle i at time k, with pgk representing the global best
position in the swarm at time k. r1 and r2 represent uniform random numbers
between 0 and 1. Kennedy and Eberhart proposed that the cognitive and social
scaling parameters c1 and c2 are selected such that c1=c2=2, in order to allow
a mean of 1 (when multiplied by the random numbers r1 and r2). The result of
using these proposed values is that the particles overshoot the target half the time.

4. Variations on Kennedy and Eberhart’s Original PSOA

In this section a number of variations on the original PSOA proposed by Kennedy
and Eberhart are presented. In doing so, we do not aim to be exhaustive. Instead,
we list the most significant and commonly used variants.

4.1. INTRODUCTION OF CONSTANT INERTIA WEIGHT

This variant, due to Shi and Eberhart [3], constitutes the first significant variation
on the original particle swarm algorithm. An inertia term w is introduced into the
original velocity rule (3) as follows:

vik+1=wvik+c1r1
(
pik−xik

)+c2r2
(
pgk−xik

)
� (4)

The scalar w performs a scaling operation on the velocity �k, analogous to
introducing ‘momentum’ to the particle. Higher values for w results in relatively
straight particle trajectories, with significant ‘overshooting’ or ‘overflying’ at
the target, resulting in a good global search characteristic. Lower values for w
result in erratic particle trajectories with a reduction in overshoot, both desirable
properties for a refined localized search.

The most serious drawback of the introduction of constant inertia is the problem
dependency of w. In a typical implementation, an intermediate value for w is
selected, resulting in a search that is unoptimal during both the ‘global’ and
‘local’ phases of the search.

4.2. LINEAR INERTIA REDUCTION

Linear inertia reduction, also proposed by Shi and Eberhart [3, 9], is a variation
on the introduction of constant inertia as discussed in Section 4.1 above. This
variation attempts to eliminate some of the drawbacks of constant inertia, and
entails the linear scaling of the inertia parameter w during the search, usually
between 0.8 and 0.4, in a specified number of function evaluations. This ensures
that the PSOA gradually transitions from an algorithm suitable for a global search
to an algorithm suitable for refining an optimum in a local search. The optimum
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rate for reducing w is still problem dependent, and constitutes the main drawback
of this variation.

4.3. LIMITATION OF MAXIMUM VELOCITY

In this variation, Shi and Eberhart [9, 19] limit the velocity of each particle to a
specified maximum velocity �max. This represents an attempt to reduce excessively
large step sizes in the position rule (2). The maximum velocity is calculated as a
specified fraction � of the distance between the bounds of the search domain:

vmax=��xUB−xLB� (5)

where xUB and xLB respectively represent the upper and lower bounds of the
domain D. This once again prevents excessively large steps during the initial
phases of a search. Previously, Carlisle and Dozier [17] and Eberhart and Shi
[19] showed that this variation increases reliability and reduces cost.

4.4. CONSTRICTION FACTOR

A notable recent variation on the original velocity rule (3) is the introduction of the
constriction factor proposed by Clerc [18], in his swarm and queen approach, as
further explored by Eberhart and Shi [19]. This method introduces a constriction
factor K into velocity rule (3), which has the effect of reducing the velocity
of the particles as the search progresses, thereby contracting the overall swarm
diameter. This in turn results in a progressively smaller domain being searched.

The value of the constriction factorK is calculated as a function of the cognitive
and social parameters c1 and c2:

vik+1=K∗[vik+c1r1
(
pik−xik

)+c2r2
(
pgk−xik

)]
� (6)

K= 2

�2−	−√
	2−4	� where 	=c1+c2� 	>4� (7)

In their search for an ‘off-the-shelf’ PSOA, Carlisle and Dozier [17] show that
cognitive and social values of c1=2�8 and c2=1�3 yield good results for their
test set.

4.5. DYNAMIC INERTIA AND MAXIMUM VELOCITY REDUCTION

This variation, proposed by Fourie and Groenwold [15], aims to reduce the
sensitivity to problem dependent parameters associated with previous implemen-
tations of inertia [9, 19]. In this approach, a simultaneous dynamic reduction in
inertia and maximum velocity is implemented to decrease the swarm domain in a
controlled fashion. The approach is outlined as follows: Firstly, the initial inertia
w0 is prescribed, while the initial maximum velocity vector vmax is again calcu-
lated as a fraction of the domain using (5). The swarm domain is then effectively
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reduced by decreasing the inertia and maximum velocity by fractions 
 and �
respectively, if no improvement in the swarm fitness values pgk and pik occur after
a to be specified number of iterations h:

if f �pgk��f �pgk−h�� then wk+1=
wk�v
max
k =�vmax

k � (8)

with 0<
��<1, prescribed. Rather than reducing the inertia and maximum
velocity in a linear fashion, dynamic inertia reduction allows the adjustment of the
algorithm parameters according to the success history of the swarm. For reasons
of clarity, we will denote h the ‘dynamic delay period’ in this paper.

5. Numerical Results with the Different PSOA Variants

In this section, numerical results are presented for an extended version of the
original Dixon-Szegö test set [22] (Table 1). The acronyms used to denote the
PSOA variants are tabulated in Table 2. In our numerical experiments, each
problem in the extended Dixon-Szegö test set is analyzed 50 times. We then
record the average optimal function values fave and the standard deviation �̄
thereof, the number of function evaluations Nfe, and the reliability RS , defined as
the ‘success ratio’, i.e. the number of runs out of 50 that converged to the a priori
known optimum. In addition, we also report the best (lowest) function value fbest

found.
For the sake of brevity, we only present tabulated results for the G1 problem.

For the other problems in the test set, the results are summarized in graphical form
in Figure 1. However, detailed tabulated results are available from the authors on
request.

Since it is not the objective to test the performance of different stopping criteria,
but rather the PSO algorithm itself, a simple a priori stopping criteria is used, in
which the algorithm is stopped when the result is within a prescribed tolerance

a of the best known solution. (
a is also given in Table 1).

Table 1. The extended Dixon-Szegö test set

No. Name n 
a

1 Griewank G1 2 0�001
2 Griewank G2 10 0�1
3 Goldstein-Price 2 0�001
4 Six-hump camelback 2 0�001
5 Shubert, Levi No. 4 2 0�001
6 Rastrigin 2 0�001
7 Branin 2 0�001
8 Hartman 3 3 0�001
9 Hartman 6 6 0�001

10 Shekel 5 5 0�001
11 Shekel 7 7 0�001
12 Shekel 10 10 0�001



A STUDY OF GLOBAL OPTIMIZATION USING PARTICLE SWARMS 99

Table 2. Acronyms used to denote algorithm variants

Acronym Name

PSO-S Standard PSOA
PSO-CI PSOA with constant inertia
PSO-CIV PSOA with constant inertia and maximum velocity limitation
PSO-LI PSOA with linear inertia reduction
PSO-LIV PSOA with linear inertia and maximum velocity limitation
PSO-C PSOA with constriction
PSO-DIV PSOA with dynamic inertia and velocity reduction

In implementing the respective variants, an asynchronous implementation for
updating the swarm best value pgk and particle best value pik is used. Numerical
studies by Carlisle and Dozier [17] indicate that the asynchronous method is in
general superior to the the synchronous method, in which the swarm achievements
are only updated once a time increment is completed. Furthermore, a global
neighborhood [6, 23] is used throughout.

The maximum number of function evaluations allowed is set at 30000. Hence,
if the a priori stopping condition is not satisfied within this number, the search
is deemed to have failed to converge. In each case, a swarm consisting of 20
particles is used, with the cognitive and social parameters c1 and c2 both set to
2, for all the variants but constriction. For constriction, the cognitive and social
parameters c1 and c2 are set to 2.8 and 1.3 respectively, as recommended by
Carlisle and Dozier [17]. For the dynamic inertia and maximum velocity variant,

=�=0�99 and h=10 are used. �=1�0 is used for all problems where the
maximum velocity limitation is applied.

In the interest of obtaining a robust and versatile algorithm no attempt is made
to optimize the algorithm parameters for individual problems. The results are
briefly discussed in the following subsections and are summarized in Figure 1.

5.1. STANDARD PSOA

The standard PSOA converged for only 3 out of the 12 test problems, and then
only with a very poor reliability. Hence we refrain from a detailed discussion of
this variant.

5.2. CONSTANT INERTIA WEIGHT AND MAXIMUM VELOCITY LIMITATION

Upon the addition of a constant inertia weight �w=0�6� the numerical results
are largely improved as compared to the results with the standard version of the
PSOA. Even so, the cost associated with the higher dimensional Shekel problems
are extremely high as compared to the other variants tested.

Additional enforcement of a maximum velocity limit marginally reduces the
cost for the complete test set, with the exception of the Shekel S5 problem.
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Figure 1. Summary of cost and reliability of the different variants studied.
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Table 3. Griewank 1

Optimum PSO algorithm
solution

PSO-CI PSO-CIV PSO-LI PSO-LIV PSO-C PSO-DIV


s 0�001 0�001 0�001 0�001 0�001 0�001
fave 0�00053 0�00054 0�00049 0�00053 0�00054 0�00050
�̄ 0�00025 0�00031 0�00030 0�00027 0�00032 0�00032
Nfe (ave.) 1081 1089 2789 2443 918 1197
Reliability 49/50 49/50 50/50 50/50 49/50 50/50

fbest 0�00000 0�00007 0�00001 0�00002 0�00000 0�00003 0�00000
x1 0�00000 −0�00223 0�00099 0�00626 0�00091 0�00387 0�00023
x2 0�00000 0�01617 −0�00643 −0�00361 0�00119 0�00944 −0�00066
Nfe 842 2093 4171 2512 831 932

5.3. LINEARLY DECREASING INERTIA AND MAXIMUM VELOCITY
LIMITATION

In the experiments with this variant, the inertia weight w is scaled linearly between
0.8 and 0.4 during the first 4000 function evaluations of the search. This variation
is more costly than the constant inertia variation for all but the Griewank G2
problem. This probably indicates that the optimum rate of inertia reduction is
problem dependent. The algorithm yields improved reliability on all of the Shekel
group of problems as compared to the constant inertia PSOA variation.

When a limitation on maximum velocity is also introduced, both the average
cost and the reliability are in general improved.

5.4. CONSTRICTION FACTOR

Numerical experimentation and work done by others [17] indicate that limitation
of the maximum velocity does not contribute to an increased efficiency for this
variant of the PSOA if bounds constraints are enforced.

The numerical results are impressive, with the cost notably reduced as opposed
to the variants with inertia. However, for some of the more difficult higher
dimensional problems, the algorithm reliability is decreased.

5.5. DYNAMIC INERTIA REDUCTION AND MAXIMUM VELOCITY LIMITATION

In terms of reliability, this variant is marginally outperformed by constriction
for most of the lower dimensionality problems. For the more difficult higher
dimensionality problems, the average cost decreases as compared to constriction,
with reliability similar to constriction.

5.6. DISCUSSION

It is noted that the coordinates of some of the minima found deviates from the
listed (known) global minima. For the very difficult Griewank 2 test function,
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this reflects the inability of the PSOA to find the global minimum of this function
reliably (there are a few thousand local minima present in the region of interest).
For the Schubert problem, all the minima found represent global minima (there
are 760 local minima present, of which 18 are global).

6. Parameter Sensitivity Study

While we note that linear inertia reduction yields good reliability, the results
presented in Section 5 indicate that constriction and the dynamic inertia/velocity
reduction variants are the main contenders when both reliability and cost are
considered. Choosing between these two contenders seems difficult, and should
probably be judged in future for problems with higher dimensionality than
considered herein.

In the interests of presenting a reliable general purpose PSOA, we now perform
a parameter sensitivity study for the two main contenders.

6.1. COGNITIVE/SOCIAL RATIO

Previously, Kennedy asserted that the sum of the cognitive and social values c1

and c2 should approximately equal 4.0 [5]. For constriction, Carlisle and Dozier
[17] have shown that it is advantageous to adjust the cognitive/social ratio to
favor cognitive learning (an individualistic swarm). They report that values of
2.8 and 1.3 respectively for the cognitive and social components yield the best
performance for the test set they consider. The set considered by Carlisle and
Dozier is smaller, and includes unimodal and multimodal functions.

In the following subsections, we investigate whether this is true for the extended
Dixon-Szegö test set under consideration, and establish the influence on dynamic
inertia reduction. Numerical results presented in Figures 2 and 3 are obtained by
varying the cognitive value c1 between 0 and 4.1, with the social value calculated
in each case as c2=4�1−c1, as suggested by Carlisle and Dozier [17].

6.1.1. Constriction

Figure 2(a) indicates that the optimum cognitive value for the extended Dixon-
Szegö test set tends to be in the region between 1.5 and 3, indicating that the
recommended setting of 2.8 by Carlisle and Dozier is also appropriate for the
problems in the extended Dixon-Szegö test set when considering cost. Figure 2(b)
shows the optimum value for reliability to reveal a greater problem dependency,
with graphs of the Hartman and Shekel family of problems peaking at c1 values
in the region of 3.5. The Griewank G2 problem however shows a sharp decrease
in reliability for values of c1 above 3. Again, a value of 2.8 would probably be a
realistic compromise to ensure reasonable reliability.
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Figure 2. Constriction: Cost and reliability as a function of the cognitive parameter c1.
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Figure 3. Dynamic inertia reduction: Cost and reliability as a function of the cognitive
parameter c1.
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6.1.2. Dynamic Inertia Reduction and Maximum Velocity Limitation

Results with dynamic inertia reduction and maximum velocity limitation
(Figure 3) indicates that this variant of the PSOA is relatively insensitive to the
cognitive/social ratio. The cost remains low throughout the range of variation
of the c1 parameter, with a sharp increase to 30000 function evaluations at val-
ues above 3.8, indicating that none of the iterations converged. The reliability is
also relatively insensitive to the cognitive parameter c1 for the majority of the
problems, with a drop in reliability at values above 3. The insensitivity to low
values of cognitive learning indicates the successfulness of the purely ‘social’
swarm (e.g. see [4]). A reasonable value for this variant is 2.0, which was initially
suggested by Kennedy and Eberhart [1] for the ‘standard’ PSOA.

6.2. SWARM POPULATION SIZE

The effect of swarm population size on constriction has been extensively studied
by Carlisle and Dozier [17], Eberhart and Shi [19], and Shi and Eberhart [24].

For constriction, our findings closely supports the findings of Carlisle and
Dozier, who maintain that, while an increase in population tends to lessen the
required swarm iterations, the accompanying cost (Nfe) increases (not shown).
Although populations of as little as 5 particles find the optimum at low cost, the
sharp decrease in reliability with small population sizes dictate a lower bound
when reliability is considered. A swarm population of 20–30 seems a reasonable
compromise between cost and reliability.

For dynamic inertia reduction, very similar results to those of constriction are
obtained (not shown). A swarm size of 20 seems sufficient as a threshold value to
prevent reduced reliability at the low end of the graph, while retaining reasonable
cost.

6.3. DYNAMIC DELAY PERIOD AND REDUCTION PARAMETERS

Both cost and reliability are quite insensitive to the value of the dynamic delay
period h (not shown). The only exception to this is the Griewank G2 problem,
which reveals a reduction in the reliability for values of h above 10.

The effect of the reduction parameters 
 and � in (8) are studied in Figure 4.
For the sake of simplicity, we select 0�95�
=��1. The study reveals a rapid
increase in cost for 
=�>0�99 (Figure 4(a)), since the algorithm approximates
the constant inertia variant as 
, � approach 1. For values of 
=�<0�99, the
reliability decreases sharply (Figure 4(b)), suggesting a optimal value of 0.99 for
the extended Dixon-Szegö test set.
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Figure 4. Dynamic inertia reduction: Cost and reliability as a function of the reduction
parameters 
 and �.

6.4. INITIAL VELOCITY FRACTION

Dynamic inertia reduction is rather insensitive to the value of the initial velocity
fraction � (not shown), although for some problems, the reliability decreases
sharply below �=0�3. A practical setting would probably be �=0�5.
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7. Recommendations

We propose that either the constriction or the dynamic inertia reduction variants
of the PSOA are used in global optimization. For constriction, we support the
previously proposed values of c1=2�8 and c2=1�3. For dynamic inertia reduction,
we propose c1=c2=2�0, h=10, and 
=�=0�99. As far as swarm popula-
tion size is concerned, a population size of roughly 20 seems optimal for both
constriction and dynamic inertia reduction.

8. Conclusions

We have applied the PSOA and some of its variants to an extended Dixon-Szegö
test set in global optimization. We show that constriction and dynamic inertia
reduction are the main contenders when considering both reliability and cost.

For problems of low dimensionality, dynamic inertia reduction is marginally
outperformed by constriction. For problems of higher dimensionality, dynamic
inertia reduction seems slightly superior.

Dynamic inertia reduction is shown to be less sensitive to parameter variations
than constriction, for which the optimum choice of cognitive c1 and social c2

scaling parameters tends to be problem dependent.
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